Chapter 7 – Confidence Intervals/Sample Sizes – One Population

C.I. around mean	$\mathbf{C.I.}_{1-\alpha} = \mathbf{x} \pm \mathbf{z}_{\alpha/2} \left(\frac{\mathbf{s}}{\sqrt{\mathbf{n}}} \right)$	
(n > 30) - page 299		
C.I. around mean	$\textbf{C.I.}_{1-\alpha} = \overline{\textbf{x}} \pm \textbf{t}_{\alpha/2,df} \left(\frac{\textbf{s}}{\sqrt{\textbf{n}}}\right)$	df = n - 1
(n ≤ 30) – page 315		
C.I. around proportion – p. 304	$\mathbf{C.l.}_{1-\alpha} = \mathbf{p} \pm \mathbf{z}_{\alpha/2} \sqrt{\frac{\mathbf{p}(\mathbf{z})}{2}}$	$\frac{(1-p)}{n} p = sample ppt$
Note: This is the standard C.I. For small sa	mple sizes, the formula in box on p	age 304 may give a smaller C.I.

C.I. around single x value – p. 317 $\bar{x} \pm t_{\alpha/2} + s \sqrt{1 + \frac{1}{n}}$

Tolerance Interval – page 318

x ± (tolerance critical value) • s
critical value from Table V on page 567

SAMPLE SIZES (always round up to nearest integer)

Estimate of mean (p. 300) $n = \left(\frac{z_{\alpha/2} \times \sigma}{E}\right)^2$ E = error bound (use s or σ) w (from text) = total interval width

Estimate of proportion (p. 306) $n = p(1-p)\left(\frac{z_{\alpha/2}}{E}\right)^2$ p = sample ppt

NOTE: if \hat{p} is unknown, use p=1-p=.50 in formula above

COMMON Z VALUES		VALUES	HINTS:
1-α	α	$Z_{\alpha/2}$	 For " how large a sample" use sample size
.90	.10	1.645	 For "findconfidence interval" use C.I. Use normal for mean, variance Use binomial for proportion, ratio, percent
.95	.05	1.96	
.98	.02	2.33	ROUNDING: C.I. normal – 1 or 2 more decimal places than mean
.99	.01	2.575	C.I. binomial – usually 3 decimal places Sample sizes – round UP to next integer

CONFIDENCE INTERVALS

C.I. around difference of two means - dependent or paired samples - page 324

- C.I. around difference of two means independent samples, $n_1, n_2 > 30$ page 309

$$\mathbf{C.l}_{1-\alpha} = \left(\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2\right) \pm \mathbf{z}_{\alpha/2} \sqrt{\frac{\mathbf{s}_1^2}{\mathbf{n}_1} + \frac{\mathbf{s}_2^2}{\mathbf{n}_2}}$$

NOTE: If n_1 or $n_2 \leq 30$, use the t-value instead of z-value - pg. 322

$$C.I_{1-\alpha} = (\overline{x}_{1} - \overline{x}_{2}) \pm t_{\alpha/2, df} \sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}} \qquad df = \frac{\left[\left(se_{1}\right)^{2} + \left(se_{2}\right)^{2}\right]^{2}}{\left(\frac{se_{1}}{n_{1}} + \frac{se_{2}}{n_{2}}\right)^{4}} \quad where \quad se = \frac{s}{\sqrt{n}}$$

C.I. around difference of two proportions – not in book $n_1p_1(1-p_1) \ge 10$ and $n_2p_2(1-p_2) \ge 10$

C.I._{1-\alpha} =
$$(p_1 - p_2) \pm z_{\alpha/2} \sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}$$

SAMPLE SIZES (always round up to nearest integer)

Estimate of p₁-p₂ – not in book

$$n = n_1 = n_2 = [p_1(1 - p_1) + p_2 (1 - p_2)] \left(\frac{z_{\alpha/2}}{E}\right)^2$$

NOTE: if p_1 and p_2 is unknown, use p = .50 in formula which becomes:

$$n = n_1 = n_2 = 0.5 \, \left(\frac{z_{\alpha/2}}{E}\right)^2$$